Cameras Filters are on the right. Filters are positioned on the left of the Mired Shift Scale, whilst the appropriate positions in relation to the Mired Shift Scale. The Lighting Source, to that of the Required Source. Where the line crosses the central band, read off the Mired Shift value. For your convenience.

Example 1 (Lighting Filter)

To convert an original source of 6500K to 3200K. You will note that the original source crosses the central band at about +200 Mired Shift. This indicates that the Filter required is a -200 CTO, which in most cases would be acceptable.

Example 2 (Lighting Filter)

To convert an original source of 2500K to 3200K. You will note that the original source crosses the central band at about -90 Mired Shift. In this example the nearest filter is a 202 Half CTO with a Mired Shift of -78. To achieve the desired corrected shift of -90 a combination of two filters can be used. 202 Half CTO + 205 Half CTO = -150 Mired Shift. This indicates that the camera filter required is an A43. (daylight film). You can see that the line crosses the central band at -90 Mired Shift.

Example 3 (Camera Filter)

To convert an original source of 3250K (tungsten light) to 5600k (sunlight). The camera filter required is a 204 Full CTO with a Mired Shift of +188. This indicates that the Line crosses the central band at about +188 Mired Shift. The resulting Mired Shift Value can be negative as well as positive.

MIRED SHIFT CALCULATION

To calculate the Mired (Micro Reciprocal Degree) Shift value for any conversion, carry out the following simple calculation.

T1 = the colour temperature of the original light source in degrees Kelvin.
T2 = the colour temperature of the required source.

Note: The resulting Mired Shift Value can be negative as well as positive.

Example 3 (Camera Filter)